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" Abstract. For a function feL”(R") (15ps2), we denote by (Skf)(x) (R>0) the
A
spherical partial sums of Fourier inverse transform of f defined by (S«f) (€)
A

=xno. ) (E)F(E) and let f(x)=F(|x|) be radial with support in {|x|=a}
(a>0). In this note, in particular, when n=3, we give a detailed proof of
the fact that, for smooth FEC2*2([0, a.]), £ =[(n—3)/2], vanishing in a
neighborhood of the origin, a necessary and sufficient condition under which

we have &ig (Skf)(0)=0 is the validity of F'** (a)=0 for all k=0,1,..., £.

This fact gives a negative answer to the localization problem concerning of

(Sxf) (x) for piecewise smooth radial function f.

Let R" be the n-dimensional Euclidean space and for any x=(x,,.... Xn),
y=Qu. ..., ¥o) in R" we denote (x,y)=xiyi+ - +x.¥. and |x|=/(x,x) .

For feL'(R") we denote the Fourier transform by
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(1) ’;kY)==(J§7E)"“ i f(x) e—i(x,y) dx
R"l

and the spherical partial sum of its Fourier inverse transform by

@) (Sef) (=T J T oY 4 >0,

ly|<R

k

It is known that, when n=2, if feC“(R"), N=[(n+1)/2], and aa feL!'(R")

Xk
for all k=0,1,...,N, then we have

(3) &ig (Sef) (x)=f(x)

for all x€R" (W.Pan [2]). Furthermore, even if fEL*(R") (1=p=2) is radial with
compact support, the localization principle for (S&f)(x) is not valid (S.Bochner
[1]). In this note we consider that, for radial functions with compact support,

how smoothness is necessary in order to assure the validity of the localization

principle.

In the followings we restrict that f is radial with support in {|x|=a}
(a>0) and we denote f(x) by F(|x|). For each m=0,1,..., FEC™([0, a ]) means
that F(t) (0st=a) belongs to the class C™ in (0, o) and that two one-sided
limits F™ (+0) and F™ (a-0) exist as finite values for all k=0,1,...,m

We will write the Fourier inversion formula at x=0 as

(4) ﬁig (S=£) (0)=£(0)
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and in this note we will give detailed proofs of the following theorems

concerning validities of (4) and (3) at x=0.

Theorem 1.

(1) When n=1 or 2, if FEC!'([0, a]), then (4) is valid.

(I) When n=3, if FEC*2([0, a]), & =[(n—3)/2], then (4) is valid under
the condition
(5) F(a)=F (a)=---=F¥)(a)=0.

(I) Conversely, for FEC**2([0, a]), £=[(n—3)/2], if (5) is not valid,
then (4) is not valid. More precisely, denoting min{ k [0=k=< £, F® (o )+0}
by ko, we have

(Sxf)(0) —£(0) ) (S=f) (0)—£(0)
L(0-8)/2K, <0< lig sup (173)/2ko

liﬁqénf

Theorem 2. For n=1, FEC2([0, a]) and x#0, we have
f(x) 0<Ixl<a),
lim (Sef) (x)= {
R0
f(x)/2 (xl=a).
Let F be a function in C ([0, a]) and vanishes in some neighborhood of the
origin. Then, according to Theorem 1, when n=1 or 2, (4) is valid if

FEC'([0, a.]). On the other hand, in the case of n=3, for FEC%*2([0, a]),

2=[(n—3)/2], (4) is valid if and only if (5) is satisfied. Hence, in this
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case, the localization principle is not necessarily valid for FEC%*? with
compact support.

Theorems 1 and 2 are due to M. A.Pinsky[3] and proofs which we will give in
this note by rewriting the proofs in [3] with some calculating devices seem to

be somewhat more legible and are more detailed.

§1. Preparations from Bessel functions.
Let Jﬂ(t) (t>0) be the Bessel function of order x# (>-1) and we write

Vﬂ(t)=t_ﬂ Jﬂ(t). Particularly it is known that

(6) Jor2(t)=Jy2/m t7'""2 cos t , Ji,o()=y2/mt t"'""?2 sin t .
Now we state some formulas concerning the differentiation and asymptotic

formulas for Jﬂ (t) (see G.N.Watson[5]).

(i) For x>-1 we have
d -u - u d
7 - = .. . T = — .
@) m {t Jﬂ(t)} t le(t), ie. — Vﬂ(t) t V/“l(t)

Especially Jo' (t)=—J,(t).

(i) For x>0 we have
d

(8) m

{t”Jﬂ(t>}=t"Jﬂ ,®.

(8) For x>-1 we have

) Jﬂ(t)=(2ﬂl"(.a+1))_l Y ar0al)) (o).

-1
Hence Vﬂ(0)=(2ﬂl‘(ﬂ+l)) is reasonable.
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(v) For x#=-1/2 we have

(10) Jﬂ(t)=/2/7r t™'7% {cos(t-m n/2-n/4)+0(1/t)} (t—o0).

For any radial function f(:)=F(]-]|)eL'(R") with supp(F)C[0, o], (1) and (2)

can be expressed in terms of Bessel functions as follows.
Q
\
(11) f(Y)=J F(t) t"!' V- o2(lylt) dt
0 A
and we denote it by F.(ly|) in order to emphasize it to be of dimension n.

Further
R
A
(12) (SRf)(X)zj Fn(r) r"-l V(n—-Z) /Z(ler) dr
0
and similarly we denote it by (Skx “ f£)(|x]).

At x=0, since
Vin-2) ,2(0)=(2 (-2 72 F(n/z))'lZ(m)'"wn-x y
where w.-1=2({m)"(I'(n/2))"' is the surface area of unit sphere in R" , then
from (11) and (12) we can write as
R/\
e ™ DO)=(27) " w.-, K F.(r) r"' dr

0

R o} ‘
=(2n) "wa- S { J F(t) t" ! Vin-2) £2(rt) dt } r"~ " dr

0 0
Q

(13) :(J-Z—;C)—"wn—l S F(t) t"! DR(") (t) dt ’
0

where Dr ™ (t) is defined by

R ' .
Dk (n) (t): S Vv (n—2)/2(rt,) ro-l dr=(/2_7z)‘" S el(x.)') dy
0 lylsR
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with |x|=t, which is called the Dirichlet kernel. This kernel can be expressed
in terms of Bessel functions by making use of the integration by substitution
and (8) as
Rt
DR (n) (t)zt—" j I'"/2 J,./z_.(r) dr=t'" (Rt)"/z Jn/z(Rt)
0
(14) =R~ Rt)™""2 J,, 2(Rt)=R" V., 2(Rt).

We will use (13), (14) in the proof of Theorem 1 and use (11), (12) in the

~ proof of Theorem 2.

§2. Lemmas.
Lemma 1. For the Dirichlet kernel Di ‘" (t) (t#0) in (14) we have
the followings. .
(i) For n21,
Dr ™ (t)=/2/m R~V 72 t-=+102 (sin(Rt-(n-1) £ /4)+ O (1/R)} (R—o0).
(i) For n=3,
et ()= = =, 0B (1) |
Proof.
(i) By (10) we have for R>1,
De ) (t)=R" V., 2(Rt)
=R" J2/7 (Rt)™"7>"'"*(cos(Rt-nzx /4w /4)+ O (1/R))

=y2/m ROV 72 ¢~ 0+ 72 (sin(Rt-(n-1) = /4)+ O (1/R)}.
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(i) If we use (7) in Dr " 2 (t)=R""2 V(.-2 .2(Rt), then we have

d
—_— D (n-2) t =Rn-2
a t) dt

=—t R" V. 2(Rt)=—t Dr " ().

Vora-1(Rt)=R""2 (-1) Rt V., 2(Rt) R

A
Lemma 2. If FEC'([0, o ]), then on F.(r) in (11) the followings are valid.
(i) For n=1,

A

Fo(r)=0("""*D72) (r—o0),

(i) For n=3,

N\ 1 d N
Fo(r)=—— —— F.-2(r) (r+0).
r dr

Proof.

In order to prove (i) we note that by making use of (8) and the integration

by parts we have

Q Q
/E;(r)== J F(t) t"! V., 2_,(rt) dt=r~"*! K F(t) (rt)"7% Ja., 2-1(rt) dt
0 0
@ d
=r"" g F(t) —az"{(rt)"/zJ"/z(rt)} dt
0
Q
=r"{F(a)(ra)"?J. (ra)— [ F(t) (rt)"2 J., 2(rt) dt}
0
Q
=F(a)a"?r "2 J,,(ra)—r "2 K F'(t) t"7% J. 2(rt) dt.
0

By asymptotic formulas (9) and (10) we get

the first term=0O(r  “*Y72) (r-o)

and since F' €C ([0, a]) we get
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1/r o

the second term=-—r"""2 { X + g }F(t) t"72 J.,.(rt) dt
0 1/r

1/r Q

tn/Z(rt)n/Z dt)+ol(r—n/2 X tn/Z(rt)—l/Z dt)

:O(r—n/z S
1/r

0
1/r Q
___:O( 4‘ t" dt)+o(r-(n+l)/2 J t(n—l)/z dt)

0 1/r
—0(r- V)L O "D /2)=0(r~ "+ 2)  (r—>00),

Thus (i) is proved.

In order to prove (i), if we note that by (7)

_('1%‘ Vinoay r2(rt)=—rt V- ,241(rt) r=—r2t V(@u-2)2(rt)
and so
1 d 1 d
V-2 s2(rt)=— T 4t Vin-ay s2(rt)=— Tt dr V-1 ,2(rt),
then we get v
Q
A\
Fn(r)z [ F(t) tn_l v(n—Z)/Z(rt) dt
0

1 4 (¢
e }' F(t) "% V-1 ,2(rt) dt
r dr 0

Q
1 d 1 d »
= —— F(t) g (n-2 -1 Vitm-2) -2)/2([‘(’,) dt=—— —— Fn—z([').
r dr r dr
' 0
Lemma 3 (The Hankel inversion formula).
For any function G(t) (t>0) which belongs to L'(0,o0) and is of bounded
variation in a neighborhood of a point t= p (>0), we have for u=-1/2,

&im J‘ { X G(t)(rt)'72 J (rt) dt} (pr)'”2J (pr) dr
-0 0 0 [/ | 42
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={G(p+0)+G(p-0)}/2.

This fact is mentioned e.g. in I.Sneddon[4, p.52] or in G.N.Watson[5, p.456].

§3. The proof of Theorem 1.
First we will prove (1) in the cases of n=1 and n=2 and next we will reduce
the proof of (I) in n=3 to the result (I).

(1) Let FEC'([0, a]). In the case of n=1, (13) is
o
S VH0)=(27) " wo [ F(t) De ™V (t) dt
0
and since by (14) and (8)

in Rt
De ) (£)=R Vi »(Rt)=R (Rt)- "% J2/7 (Rt)-'“? sin Rt =/2/7% ——m—-

and wo=2, so we have

Qo
2 in Rt
(Sx ) £)(0) =—— J F(t) ———— dt.
b 4 t
0
Now as
% sin Rt s (R gint
Sin
im S0 dt=lim dt=1
S0 7 t S0 0 t

and {F(t)—F(0)}/t=0(1) from FEC'([0, a]), so we get by the Riemann-Lebesgue

theorem

sin Rt dt=0,

Q
bin (G5 DO —£(0))=in 2 S F(t) —F(0)
-0 500 -

In the case of n=2, since again by (13) and (14)
o
B @ )()={2rn)%w, J~ F(t) t D@ (t) dt,
0
De @ (t)=R? V,(Rt)=R t~! J,(Rt),

21
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and w,;=2n, so we have

o
(Se @ £)(0)= J F(t) R J.(Rt) dt.
0 . .
Now since, by making use of (7) especially Jo' (t)=-J:(t) and (10),

o

&_i’g S RJ, (Rt)dt-—*—&_imlg {Jo(Ra)—Jo(0)}=Jo(0)=1,
0

so we have

a
lim {(Se P £)(0)—f(0)}=1lim S G(t)RJ  (Rt)dt,
R-w Row

where G(t)=F(t)—F(0). Integrating by parts we have

Q Q d
G(t)RJ: (Rt)dt= G(t) —{~Jo(Rt)}dt
| J oo

o
=—G(a)Jo(Ra)+ J G' (t)Jo(Rt)dt.
: 0
We note that the first term is o(1) as R—»oo by (10). Moreover it can be shown

that the second term is o(l) also as R—oo as follows. Since G' (t)EC ([0, a.]),

so G' (t) can be uniformly approximated by algebraic polynomials in [0, a]. That

M=

is, for any given & >0, there exists P(t)= cet® such that |G' (t)—P(t)|<e

k=0
for all t€[0, a]. Then
(o} N Qo
the second term=J {G' (t)—P(t) Mo (t)dt+ Z CkJ t*Jo(Rt)dt
0 k=0 0
\ _
=1+ Z Ck [«
k=0

say. Because Jo(Rt)=0 (1), we have

a
NEY J |[Jo(Rt) |dt=0C(e)
0

22
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uniformly in R. For each k=0,1,...,N, by (9) and (10) we have

1/R Q ,
Ie=( X + } ) t*Jo(Rt)dt

0 1/R
1/R o

=0( X t* dt)+0O( J t* Rt)"'72 dt)=0 @R *“*V)+O0O([R'?)
0 1/R '

=0(R "2)=0(1) (R—c0).

Thus we get that the second term is o(1) as R—oo and (l) is proved.

To prove (I), let n=3. Using Lemma 1(i) and integrating by parts in (13),

we have
] @ 1 d
(s <">f)(0)=—(—“’—',2_"7£#- L F()n (== — = De 77 (1))dt
wor (& d
=T ]’0 F(t) t~-2 n De 72 (t) dt
(15) =——2=1— F(a)a "2 "2 (a)+

C(Zm)e

Q
Wn-1 (n-2 _d_ n-2
+———m" [O De "7 (t) m {F(t)t""2} dt.

Here we note that the following recurrence formula is valid;

wWo

Wn-1 1 Wn-3 1 {2

Zz)" n2 (Zm)? (21! OF o even)
S n:even),

(n:odd),
(16)

where wo=2 and w,=2m. If in the case of odd n we write n=2N+1 (N=1)
and in the case of even n we write n=2N+2 (N=1), then £ =[(n-3)/2]=N-1

in both of the cases.

23
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To repeat the integration by parts in (15), for our radial function

f(x)=F(|x]) with FEC2*2([0, a ]) we introduce the sequence of functions

{fm(t)}m=0. o oo., N=1 such as
fo(t)=t""2 F(t),
1 d
fo(t)=— — fo1(t) (m=1,2,...,N-1).
t dt

Then we find that f.(t) can be expressed as

(A7) f.(t)=({m-2)(n-4)---(n-2m) t 272" F(t)+ E Ci; t"T27Emri U ()

and

1£i, jSm

(18) fo.(t)=t "2 F (t)+ E Ciy thT2Tmm D R GY (),

0<i, jsm-1

We note that since exponents of t in (17) and (18) are greater than n-2-2m=

=n-2-2(N-1)=n-2N=1, so £.(0)=0.

Repeating the integration by parts (N-1)times in (15) by making use of

Lemma 1(i) we get

(Sw

-+

24

(n) f)(O)

wn~l

(f2m)"

Wn-1

(f2m)e

W q-1

(f2m)"

Wn-1t

T (Zm)"

fo(a)Dg "2 (@) +—amt

fo(a)Dr "2 (a)— Dot

2
Z fx-1(a)De "72% (a)

k1
e d

[ De =1 (£) ——f,(t) dt
. dt

(2m)" .

(f2m)"

r Q
d
Dr =2 (t) m fo(t) dt
J0
(% 4
| De " (t) f
dt R (t) l(t) dt
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N
— Wn-1 -1 R(n—zk)
(19) T ;f (a)D (a)

Q
Wn-1 ' d
—_— Dg (72N (¢ fnor (t) dt.
+ i) [0 R (t) m n-1(t) |

From (17) we note that

(20) —foe (£) = (n-2) (n-1) - - - (n-2N) "~ TE (L) + § Cis LTENSIHEWG (4),

dt 151, jSN

When n=2N+1 (N=1), by (20) we have

d(ti, foo i (W)= CN-1D)NF(L)+ ; cij tt FU (£)=Gn(t)

151, jSN

say, and we set g(x)=Gn(|x]). In this case since by (16) we have

wn—l 1 O)o

JZr)" (DIt Iz’

so we can rewrite (19) as

N
(n Z”_ﬁ:_l___ n-2k
@) (W DO=——p= ék\:__lfk_t(amv (o)

Q
1 ©o
+ De ¢V . .

CN-1)It 27 fo (t) Gu(t) dt

The assumption FEC£*2([0, o 1)=C *'([0, a]) implies Gy€C'([0, a.]). So from

(1) with n=1 we have

1 1
: h —_— 1 1) e s,
kig the second term of (21) RN kig (8= M g)(0) CENT g(0)
1
———EEEjI;Y?‘ Gn(0)=F(0)=£(0).
Therefore we get
25
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(22) S D0)=——m=— Z fre-1(a)Dr "2 (o) +£(0)+0(1) (R—o0),

(J'_)

Thus under the condition (5), (4) is valid.

When n=2N+2 (N=1), by (20) we have

d(ti, fN—l(t)::t{(ZN)!!F(t)+ E Cij ti F O (t)}=tGn(t)
1<1, jsN

say, and we set g(x)=Gx(|x|). In this case since by (16) we have

Wn-1 1 w1

(2n)" . (@Il (2r)2’

so we can rewrite (19) as

N
. (n R . n=-2k
(28) (8™ D(0) =25 %;fk-,(a)nu ' (a)

1 w1

+
N1 (2n)?
The assumption FEC%*2([0, . ])=C" ' ([0, a]) implies Gn€C'([0, a.1). So from

N l
J De @ (t)tGn(t) dt.
0

(1) with n=2 we have

in (5, @ g) (0) =——— g(0)

&_1’2 the second term of (21)= @M

(2N)11
1
BRCO

Gn(0)=F(0)=£(0).
Therefore the same expression as (22) holds and so (4) is valid under the
condition (5). Thus (@) is proved.

We pass to prove (I). We will use (22) which is valid in both of the cases

n=2N+1 and n=2N+2 (N=1). Suppose that (5) is not satisfied (£ =N-1) and let

26
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ko be in the statement of (E). Then by (18) we have fk (a)+0 and fk(a)=0
0
for all k=0,1,...,ko-1. So we can write (22) as

Wn-1

{n) —_— e ———
@) (8 DO =——F=

N
E fi-1(a)De 729 (a)+£(0)+0(1) (Ro)
k=ko+1

For each k=ko+1, ko+2,...,N, we have by (14) and (10),
fioi(a)De "2 (a)=fr-1(a) R""2* V(a-21).2(Ra)
=f-1(a)R"" 252/t (Ra ) ("-20 72-172{cos(Ra -(n-2k) n /4- /4) + O (1/R)}
=C(k)fx-1(a) RV 72°% {sin(Ra-(n-2k-1) = /4)+ O (1/R)},

where C(k)=m o~ (""2k+*D /2 (~(0) Especially for k=ko+l we have

(25) fi, (a)Dg "2kt D) ()
=C(kot1)fi,(a) R 72 % {sin(Ra.-(n-2ko-3) = /4)+O(1/R)}

and C(ko+1)fy, (a)#0. For k=kot2,...,N, since
(n-1)/2-k=(n-1)/2-(ko+2) = (n-3)/2-ko-1,

so we have

(26) fi-i(a)De "2 (a)=0(R" V72 *)=0 (R~ /2% 1),

Hence from (24)~(26) we get
(Se ™ £)(0)—£(0)
=C(kot1)fr, (a) R 727% sin(Ra-(n-2ko-3) 7 /4) + O (R "= /2% -1),

Thus (E) is valid and Theorem 1 is proved.
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NI | -El ectronic Library Service



Hokuri ku University

16 Michitaka Kojima

§4. The proof of Theorem 2.

First we will prove the theorem in the cases of n=1 and 2, and in the case
of n=3 we reduce the case to them similarly to Theorem 1. Let FECZ2([0, a.]),
fix x with 0<|x|=a and put po=|x|(>0).

When n=1, we can write by (11), (12) and (6) as

R Q
(S “)f)(P): g { [ F(t)V-1 2(rt)dt} Vor2(pr)dr
0 0

R a
=2/n J { " F(t)cos(rt)dt} cos(pr)dr
0 0
R

Q . .
((J2m)! [ f(t) e—lyt dt} o Y dy

-Q

~ )

=(2rn)"! [ f(y) o dy.
-R

Since f(t) (té[-a, a]) belongs to L'(-a, a) and is of bounded variation in a

=(2m)"! [

-~ =

neighborhood of the point x, by making use of the Dirichlet-Jordan theorem

we have
fx)  (0<IxI<a),
l{gg; (Se ' E)(Ix1) ={f(x+0) +£(x-0)}/2= {
f(x)/2 (Ixl=a).

So in the case of n=1 the theorem is valid.
When n=2, we can write by (11) and (12) as

R o
S ®£)(p)= J { J F(t)tVo(rt)dt} rVo(pr)dr
0 0

R o
- J ( J F(t)tdo(rt)dt} rJo(pr)dr
0 0

28
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R Q

=p-!/2 g { j F(L)t'72(rt) 2o (rt)dt}(pr)'72Jo(p r)dr.
0 0 :

We put F(t)t'72=G(t). Since G(t) belongs to L'(0, o) and is of bounded

variation in a neighborhood of the point t=p€(0, o.], by applying Lemma 3

(Hankel inversion formula) with « =0 we get

bim (8@ D)(p)=p 172 (G(p +0)+G( p-0))/2=(F(p +0)+F(p-0))/2
{ F(p)=Ff(x) 0<xl<a),
| F(o)2=t)/2 (xl=0a).

Thus in the case of n=2 the theorem is proved.

When n=3, applying Lemma 2(i) and integrating by parts in (12) we have

R
N\
Se™f)(p)= S F.(r) r"~ ' V-2 2(pr) dr
0
R
1 d~n y
= {“'—‘_“ Fn—z(l‘)} r" V(n-z)/z(Pr) dr
r dr

R PN
=— J {(—— Fo2(r)} "2 V-2 2(pr) dr
dr
0
R
/\ 7\
27) =—F.-2(RR"" 2V (h-2 2(Rp)+ S Fo_2(r)
0

ir {r" 2 V(n-2) ,2(pr))dr.

By Lemma 2(i) and (10) we have
the first term of (27)=Q (R~ {(n-2 #1172 pn=2 p-(n-2) /2-1/2)=()(R"!)

as R—oo, Since by (8),

d d
n-2 V oo — - (n-3)
dr {r ( 2)/2(01‘)} P dr

{Cor) 272 J(a-y s2(pr)}

=p N (pr) " V72 Jn2alpr)p=r""*(pr) " ""V72 Ja_ay2(pr)
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=r""* V-o,2(pr),
so we can write the second term of (27) as

R
A
&’ Fn—Z(r) rin-2-1 V(n~2)/2-1(01‘) dr=(Sx ("_Z)f)(P)-
0
Therefore (27) can be written as

G (p)=Gr"2£)(p)+0O(/R) (R—o0).
Hence the convergence and the limit of (Sg‘™ f)(p) are identical with those of

(Sr "2 f)(p). So the cases of odd n and even n are reduced to the cases of

n=1 and n=2 separately. Thus the theorem is proved.
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