Cyclic AMP Phosphodiesterase 4 Isoenzyme Inhibitory Activity of (R)and (S)-Isomer of 7-Methyl- or 8-Alkyl-4,5,7,8-tetrahydroimidazo[2,1-i]-purin-5-one

Hirokazu Suzuki, ${ }^{*, a}$ Masaaki Nomura, ${ }^{c}$ Ken-ichi Miyamoto, ${ }^{c}$ Hiroyuki Sawanisht, ${ }^{a}$ and Kenji Yamamoto ${ }^{b}$

${ }^{a}$ Department of Synthetic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University; ${ }^{b}$ Department of Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University; Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan: and ${ }^{c}$ Department of Hospital Pharmacy, School of Medicine, Kanazawa University; 13-1 Takara-machi, Kanazawa 920-8641, Japan. Received September 10, 2003; accepted November 14, 2003

Abstract

We investigated the structure-activity relationship of the (R) - and (S)-isomer of 7 -methyl- and 8 -alkyltetrahydroimidazo $[2,1-i]$ purines for phosphodiesterase 4 (PDE4) inhibitors. (S)-8-Isopropyl-3,4-dipropylimizazo $2,1-i]$ purine (\boldsymbol{S})-2c exhibited both potent and selective PDE4 inhibitory activity.

Key words phosphodiesterase 4 inhibitor; condensed purine; imidazo[2,1-i]purine
cAMP-phosphodiesterase 4 (PDE4) is found in airway smooth muscle and inflammatory cells, and selective inhibitors of PDE4 are promising drugs for the treatment of asthma and inflammation. ${ }^{1-3)}$

During investigations of heterocycle condensed purines to obtain selective PDE4 inhibitors, we found that some heterocycle [i]-condensed purines inhibited PDE4 more effectively than did $[a]-,[b]-,[c, d]-$ and $[g, h]$-condensed purines. ${ }^{4}$ Among heterocycle [i]-condensed purines, 3,4-dipropyl-4,5,7,8-terahydro-3 H -imidazo[2,1-i]purine-5-one (1) showed selective PDE4 inhibitory activity and lacked some of the adverse reactions of xanthine derivatives. ${ }^{5)}$ Additionally, $\mathbf{1}$ did not show emetic action, which is one in the development of PDE4 inhibitors. In the course of subsequent investigations, we found that tetrahydroimidazo[2,1-i]purines (dl-2a, $d l-2 d$ and $d l-\mathbf{3 a}, d l-\mathbf{3 d}$), with a methyl group at 7- or 8-position, although causing a decline in selectivity, affect the PDE4 inhibitory activities more strongly than does $\mathbf{1 . 4}{ }^{4}$

The present study was undertaken to determine whether there is a difference between the PDE4 inhibitory activities of (R) - and (S)-isomers of 8 -alkyl- $(\mathbf{2 a}-\mathbf{c}, \mathbf{3 a - c})$ and those of 7-methyl-imidazo[2,1-i]purines (2d, 3d). We report here on the synthesis and PDE4 inhibitory activity of imi-dazo[2,1-i]purines.

Chemistry Substituted imidazo[2,1-i]purines were prepared using the pathway we previously described. ${ }^{4,5)}$ Treatment of 3-propyl-6-(1,2,4-triazol-4-yl)purine (4) or 6-chloro-3-propylpurine (7) with each of the (R) - and (S)-isomers of 2-amino-1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, and 1-amino-2-propanol yielded the corresponding 6-(hydroxyethylamino)purines ($\mathbf{5 a - d}, \mathbf{8 a}-\mathbf{d}$), which

Fig. 1
were used for the next reaction without purification. Ring closure of $\mathbf{5 a}-\mathbf{d}$ and $\mathbf{8 a}-\mathbf{d}$ with thionyl chloride yielded (R) - and (S)-isomers of imidazo[2,1-i]purines ($\mathbf{6 a}-\mathbf{d}, \mathbf{3 a}-$ d). N3-Propylation of $\mathbf{6 a - d}$ with propyl bromide in the presence of potassium carbonate afforded the corresponding (R) - and (S)-isomers of $\mathbf{2 a}-\mathbf{d}$ (Chart 1).

BIOLOGICAL RESULTS AND DISCUSSION

The inhibitory activities of the imidazo[2,1-i]purines ($\mathbf{2 a}$ - $\mathbf{d}, \mathbf{3 a}-\mathbf{d}$) against PDE1 and PDE4 isoenzymes from guinea-pig brain and PDE3 from guinea-pig heart were measured according to published methods. ${ }^{6}$) The results are shown in Table 1 together with the PDE inhibitory activities

Table 1

	R^{7}	R^{8}	$\mathrm{IC}_{50}(\mu \mathrm{M})$		
			PDE1	PDE3	PDE4
(R)-2a	H	Me	22	20	1.4
(S)-2a	H	Me	20	30	5.6
(R)-2 $\mathbf{-}$	H	Et	11	76	1.8
(S)-2b	H	Et	5.6	65	1.7
(R)-2c	H	iso-Pr	16	47	4
(S)-2c	H	iso-Pr	21	>100	0.2
(R)-2d	Me	H	31	85	>100
(S)-2d	Me	H	37	50	0.6
(R)-3a	H	Me	28	37	1.8
(S)-3a	H	Me	13	23	1
(R)-3b	H	Et	8.9	59	1.6
(S)-3b	H	Et	4.5	27	1.4
(R)-3c	H	iso-Pr	9.3	>100	7.6
(S)-3c	H	iso-Pr	1.7	18	0.8
(R)-3d	Me	H	78	90	>100
(S)-3d	Me	H	51	>100	8.5
1	-	-	29	54	1.6
IBMX	-	-	6.8	2.3	6.8
Amrinone	-	-	>100	53	>100
Rolipram	-	-	>100	>100	3.7

Data are mean of three experiments.

> a: $R^{7}=H, R^{8}=M e ; b: R^{7}=H, R^{8}=E t$
> $c: R^{7}=H, R^{8}=$ isoPr; $d: R^{7}=M e, R^{8}=H$

Reagents: (i) (2R)-, (2S)-2-amino-1-propanol, (2R)-, (2S)-2-amino-1-butanol, (2R)-, (2S)-2-amino-3-methyl-1-butanol or (2R)-, (2S)-1-amino-2-propanol, pyridine; (ii) $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$; (iii) $\mathrm{Pr-Br}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$

Chart 1

Table 2. Physicochemical Data for Tetrahydroiomidazo[2,1-i]purines (6, 2, 3)

Compd. no.	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Recryst. solv.	Formula	Analysis (\%) Calcd (Found)		
				C	H	N
(R)-6a	282-283	AcOEt-MeOH	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 56.64 \\ (56.58) \end{gathered}$	$\begin{gathered} 6.48 \\ (6.50) \end{gathered}$	$\begin{gathered} 30.02 \\ (29.95) \end{gathered}$
(S)-6a	282-283	AcOEt-MeOH	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 56.64 \\ (56.69) \end{gathered}$	$\begin{gathered} 6.48 \\ (6.53) \end{gathered}$	$\begin{gathered} 30.02 \\ (30.11) \end{gathered}$
(R)-6b	258-259	AcOEt-MeOH	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$	$\begin{array}{r} 58.28 \\ (58.33) \end{array}$	$\begin{gathered} 6.93 \\ (7.01) \end{gathered}$	$\begin{gathered} 28.32 \\ (28.31) \end{gathered}$
(S)-6b	253-254	AcOEt-MeOH	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 58.28 \\ (58.21) \end{gathered}$	$\begin{gathered} 6.93 \\ (6.95) \end{gathered}$	$\begin{gathered} 28.32 \\ (28.45) \end{gathered}$
(R)-6c	250-251	AcOEt-MeOH	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	$\begin{array}{r} 59.75 \\ (59.82) \end{array}$	$\begin{gathered} 7.33 \\ (7.19) \end{gathered}$	$\begin{array}{r} 26.80 \\ (26.84) \end{array}$
(S)-6c	255-256	AcOEt-MeOH	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 59.75 \\ (59.70) \end{gathered}$	$\begin{gathered} 7.33 \\ (7.35) \end{gathered}$	$\begin{gathered} 26.80 \\ (26.77) \end{gathered}$
(R)-6d	237-238	AcOEt-MeOH	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 56.64 \\ (56.71) \end{gathered}$	$\begin{gathered} 6.48 \\ (6.66) \end{gathered}$	$\begin{gathered} 30.02 \\ (29.94) \end{gathered}$
(S)-6d	238-239	AcOEt-MeOH	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 56.64 \\ (56.68) \end{gathered}$	$\begin{gathered} 6.48 \\ (6.51) \end{gathered}$	$\begin{gathered} 30.02 \\ (30.11) \end{gathered}$
(R)-2a	125-126	pet. Ether	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 61.07 \\ (61.33) \end{gathered}$	$\begin{gathered} 7.69 \\ (7.84) \end{gathered}$	$\begin{gathered} 25.43 \\ (25.50) \end{gathered}$
(S)-2a	128-129	pet. Ether	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 61.07 \\ (61.21) \end{gathered}$	$\begin{gathered} 7.69 \\ (7.78) \end{gathered}$	$\begin{gathered} 25.43 \\ (25.38) \end{gathered}$
(R)-2b	120-121	pet. Ether	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	$\begin{array}{r} 62.26 \\ (62.39) \end{array}$	$\begin{gathered} 8.01 \\ (7.92) \end{gathered}$	$\begin{gathered} 24.20 \\ (24.41) \end{gathered}$
(S)-2b	120-121	pet. Ether	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 62.26 \\ (62.13) \end{gathered}$	$\begin{gathered} 8.01 \\ (7.99) \end{gathered}$	$\begin{gathered} 24.20 \\ (24.34) \end{gathered}$
(R)-2c	126-127	pet. Ether	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 63.34 \\ (63.43) \end{gathered}$	$\begin{gathered} 8.31 \\ (8.14) \end{gathered}$	$\begin{gathered} 23.08 \\ (23.15) \end{gathered}$
(S)-2c	126-127	pet. Ether	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 63.34 \\ (63.31) \end{gathered}$	$\begin{gathered} 8.31 \\ (8.47) \end{gathered}$	$\begin{gathered} 23.08 \\ (23.01) \end{gathered}$
(R)-2d	Oil	-	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$		$\begin{aligned} & 275.1746 \\ & 275.1749^{a)} \end{aligned}$	
(S)-2d	Oil	-	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$		$\begin{aligned} & 275.1746 \\ & 275.1744^{a)} \end{aligned}$	
(R)-3a	129-130	pet. Ether	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 61.07 \\ (61.19) \end{gathered}$	$\begin{gathered} 7.69 \\ (7.71) \end{gathered}$	$\begin{gathered} 25.43 \\ (25.52) \end{gathered}$
(S)-3a	131-132	pet. Ether	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 61.07 \\ (61.17) \end{gathered}$	$\begin{gathered} 7.69 \\ (7.61) \end{gathered}$	$\begin{gathered} 25.43 \\ (25.54) \end{gathered}$
(R)-3b	117-118	pet. Ether	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 62.26 \\ (62.24) \end{gathered}$	$\begin{gathered} 8.01 \\ (8.13) \end{gathered}$	$\begin{array}{r} 24.20 \\ (24.36) \end{array}$
(S)-3b	118-119	pet. Ether	$\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 62.26 \\ (62.09) \end{gathered}$	$\begin{gathered} 8.01 \\ (8.12) \end{gathered}$	$\begin{gathered} 24.20 \\ (24.34) \end{gathered}$
(R)-3c	129-130	pet. Ether	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 63.34 \\ (63.46) \end{gathered}$	$\begin{gathered} 8.31 \\ (8.28) \end{gathered}$	$\begin{gathered} 23.08 \\ (23.25) \end{gathered}$
(S)-3c	127-128	pet. Ether	$\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}$	$\begin{gathered} 63.34 \\ (63.28) \end{gathered}$	$\begin{gathered} 8.31 \\ (8.40) \end{gathered}$	$\begin{gathered} 23.08 \\ (23.22) \end{gathered}$
(R)-3d	Oil	-	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$		$\begin{aligned} & 275.1746 \\ & 275.1745^{a} \end{aligned}$	
(S)-3d	Oil	-	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}$		$\begin{aligned} & 275.1746 \\ & 275.1747^{a} \end{aligned}$	

of 1, non-selective PDE inhibitor IBMX, PDE3 inhibitor amrinone and PDE4 inhibitor rolipram, which were have been reported earlier. ${ }^{7}$

The PDE4 inhibitory activities of $(R) \mathbf{- 2 a},(R) \mathbf{- 2 b}$ and (S) $\mathbf{2 b}$ on 3,4-dipropyl-imizazo[2,1-i]purines (2a-d) were as active that of as $\mathbf{1}$. Moreover, (S)-2c and (S)-2d inhibited PDE4 more strongly than $\mathbf{1}$ or rolipram. The PDE1 inhibitory activity of (R) - and (S)-isomers of $\mathbf{2 b}$ was stronger than that of 1, while (R) - and (S)-isomers of 2a, 2c and $\mathbf{2 d}$ were as active as $\mathbf{1}$. PDE3 inhibitory activities of (R) - and (S)-isomers of $\mathbf{2 b}, \mathbf{2 c}$ and $\mathbf{2 d}$ were weaker than or the same as those of $\mathbf{1}$. (S)-2c did not show a definite effect on PDE3 isoenzymes, although (R) - and (S)-isomers of 2a showed somewhat stronger PDE3 inhibitory activities than did 1.

The PDE4 inhibitory activities of (S) - $\mathbf{3 a}$ and (S)-3c on 1,4-dipropyl-imizazo[2,1-i]purines (3a-d) were more potent than those of $\mathbf{1}$, and those of other compounds similar except for $(R)-\mathbf{3 c}$, and (R) - and (S)-isomers of $\mathbf{3 d}$. However, (R) - and (S)-isomers of $\mathbf{3 a}-\mathbf{c}$ apart from (R)-3c induced an increase in PDE1 and PDE3 inhibitory activities.

In general, the PDE4 inhibitory potency of $\mathbf{2 a - d}$ and $\mathbf{3 a}$-d was higher in (S)-isomers than (R)-isomers, except
that of 2a. A potential difference in PDE4 inhibitory activities between (S) - and (R)-isomers was observed for $2 \mathbf{d}$ and 3d, which have a methyl group at the 7-position. Further, the PDE1 and PDE3 inhibitory activity of (S)-2d was similar to those of 1, and inhibited PDE4 more strongly than did 1.

In our studies on the (R) - and (S)-isomers of 3,4-dipropyltetrahydroimidazo $[2,1-i]$ purines ($\mathbf{2 a - d}$) and 1,4-dipropyltetrahyrdoimidazo $2,1-i]$ purines ($\mathbf{3 a}-\mathbf{d}$), we found 8-isopropyl derivatives $(S) \mathbf{- 2 c}$ to be an effective inhibitor for PDE4. This finding indicates that the substituents on the dihydroimidazole ring and N3-propyl group may be important for the expression of potent and selective PDE4 inhibitory activities.

MATERIALS AND METHODS

Melting points were measured on a Yanagimoto micro melting points hot stage apparatus and were uncorrected. Infrared spectra (IR) were determined with a Horiba FT-720 spectrometer or a Hitachi 270-30 spectrometer. Mass spectra (MS) were measured with a JEOL-DX300. Nuclear magnetic response spectrometer ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ was recorded with a JEOL EX 90A. Chemical shifts are quoted in parts per million

Table 3. Spectral Data for Tetrahydroiomidazo[2,1-i]purines (6, 2, 3)

	IR (KBr) cm^{-1}	$[\alpha]_{\mathrm{D}}(c=0.5)^{b)}$	${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \boldsymbol{\delta}$;
(R)-6a	3423, 1707, 1649	72.9	$1.00(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.84(2 \mathrm{H}$, sext. $J=7.3 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=5.7,10.2 \mathrm{~Hz})$, $4.03-4.60(2 \mathrm{H}, \mathrm{m}), 6.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.73(1 \mathrm{H}, \mathrm{s})$.
(S)-6a	3450, 1707, 1678	-71.8	$1.00(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 1.84(2 \mathrm{H}$, sext. $J=7.3 \mathrm{~Hz}), 3.82(1 \mathrm{H}, \mathrm{dd}, J=5.7,10.2 \mathrm{~Hz})$, $4.03-4.60(2 \mathrm{H}, \mathrm{m}), 6.03(1 \mathrm{H}, \mathrm{br}), 7.73(1 \mathrm{H}, \mathrm{s})$.
(R)-6b	3448, 1709, 1684	82.8	$1.00(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.63-2.04(4 \mathrm{H}, \mathrm{m}), 3.90-4.52(4 \mathrm{H}, \mathrm{m}), 7.94(1 \mathrm{H}, \mathrm{s})$, 11.81 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$).
(S)-6b	3448, 1709, 1684	-79.6	$1.00(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.14(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.63-2.04(4 \mathrm{H}, \mathrm{m}), 3.91-4.52(4 \mathrm{H}, \mathrm{m}), 7.94(1 \mathrm{H}, \mathrm{s})$, $11.77(1 \mathrm{H}, \mathrm{brs})$.
(R)-6c	3448, 1706, 1675	71.9	$0.91-1.20(9 H, m), 1.61-2.04(3 \mathrm{H}, \mathrm{m}), 4.01-4.41(5 \mathrm{H}, \mathrm{m}), 7.93(1 \mathrm{H}, \mathrm{s}), 11.81(1 \mathrm{H}, \mathrm{brs})$.
(S)-6c	3448, 1713, 1672	-68.8	$0.91-1.20(9 H, \mathrm{~m}), 1.63-2.04(3 \mathrm{H}, \mathrm{m}), 4.01-4.41$ ($5 \mathrm{H}, \mathrm{m}$), $7.93(1 \mathrm{H}, \mathrm{s}), 11.85(1 \mathrm{H}, \mathrm{brs})$.
(R)-6d ${ }^{\text {a }}$	3448, 1712, 1675	86.2	$0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.64(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.82(2 \mathrm{H}$, sext. $J=7.2 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=4.6,11.4 \mathrm{~Hz})$, $4.06-4.40(2 \mathrm{H}, \mathrm{m}), 4.74-5.04(1 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{s}), 11.33(1 \mathrm{H}, \mathrm{brs})$.
$(S)-6 d^{a}$	3405, 1707, 1655	-88.8	$0.99(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.64(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.82(2 \mathrm{H}$, sext. $J=7.2 \mathrm{~Hz}), 3.78(1 \mathrm{H}, \mathrm{dd}, J=4.4,11.4 \mathrm{~Hz})$, $4.06-4.41(2 \mathrm{H}, \mathrm{m}), 4.74-5.04(1 \mathrm{H}, \mathrm{m}), 7.95(1 \mathrm{H}, \mathrm{s}), 11.52(1 \mathrm{H}, \mathrm{brs})$.
(R)-3a	1689, 1653	98.6	$0.95(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{m})$, $3.50(1 \mathrm{H}, \mathrm{dd}, J=7.0,10.4 \mathrm{~Hz}), 3.86-4.28(6 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{s})$.
(S)-3a	1685, 1653	-97.9	$\begin{aligned} & 0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.37(3 \mathrm{H}, \mathrm{~d}, J=6.4 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{~m}) \text {, } \\ & \quad 3.50(1 \mathrm{H}, \mathrm{dd}, J=7.2,10.4 \mathrm{~Hz}), 3.86-4.28(6 \mathrm{H}, \mathrm{~m}), 7.45(1 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
(R)-3b	1682, 1655	82.1	$0.94(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.56-2.04(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=6.7,10.4 \mathrm{~Hz})$, $3.86-4.32(6 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{s})$.
(S)-3b	1685, 1654	-79.6	$0.94(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.57-2.04(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=6.6,10.3 \mathrm{~Hz})$, $3.86-4.32(6 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{s})$.
(R)-3c	1697, 1649	129.7	$0.89-1.03(12 \mathrm{H}, \mathrm{m}), 1.56-2.04(5 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=7.2,10.4 \mathrm{~Hz}), 3.77-4.26(6 \mathrm{H}, \mathrm{m}), 7.43(1 \mathrm{H}, \mathrm{s})$.
(S)-3c	1687, 1649	-132.4	$0.89-1.03(12 \mathrm{H}, \mathrm{m}), 1.56-2.04(5 \mathrm{H}, \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=7.2,10.4 \mathrm{~Hz}), 3.77-4.26(6 \mathrm{H}, \mathrm{m}), 7.43$ ($1 \mathrm{H}, \mathrm{s}$).
(R)-3d	1693, 1655	63.1	$0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}), 1.65-2.05(4 \mathrm{H}, \mathrm{m}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=4.3,13.7 \mathrm{~Hz})$, $3.87-4.48(6 \mathrm{H}, \mathrm{m}), 7.46(1 \mathrm{H}, \mathrm{s})$.
(S)-3d	1712, 1668	-60.4	$\begin{aligned} & 0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 1.44(3 \mathrm{H}, \mathrm{~d}, J=6.0 \mathrm{~Hz}), 1.65-2.05(4 \mathrm{H}, \mathrm{~m}), 3.63(1 \mathrm{H}, \mathrm{dd}, J=4.3,13.7 \mathrm{~Hz}) \text {, } \\ & 3.87-4.48(6 \mathrm{H}, \mathrm{~m}), 7.46(1 \mathrm{H}, \mathrm{~s}) . \end{aligned}$
(R)-2a	1687, 1652	112.2	$0.94(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{m})$, $3.47(1 \mathrm{H}, \mathrm{dd}, J=6.8,10.4 \mathrm{~Hz}), 3.86-4.28(6 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{s})$.
(S)-2a	1686, 1654	-108.7	$0.94(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.34(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{m})$, $3.47(1 \mathrm{H}, \mathrm{dd}, J=6.8,10.4 \mathrm{~Hz}), 3.86-4.28(6 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{s})$.
(R)-2b	1686, 1655	103.3	$0.86-1.06(9 \mathrm{H}, \mathrm{m}), 1.55-2.04(6 \mathrm{H}, \mathrm{m}), 3.57(1 \mathrm{H}, \mathrm{dd}, J=6.6,10.3 \mathrm{~Hz}), 3.86-4.29(6 \mathrm{H}, \mathrm{m}), 7.44(1 \mathrm{H}, \mathrm{s})$.
(S)-2b	1686, 1655	-97.7	$0.86-1.06$ ($9 \mathrm{H}, \mathrm{m}$), 1.56-2.04 (6H, m), 3.56 ($1 \mathrm{H}, \mathrm{dd}, J=6.6,10.3 \mathrm{~Hz}$), 3.86-4.29 ($6 \mathrm{H}, \mathrm{m}$), $7.44(1 \mathrm{H}, \mathrm{s})$.
(R)-2c	1687, 1649	124.8	$0.80-1.03(12 \mathrm{H}, \mathrm{m}), 1.60-2.04(5 \mathrm{H}, \mathrm{m}), 3.61(1 \mathrm{H}, \mathrm{dd}, J=6.9,9.9 \mathrm{~Hz}), 3.76-4.38(6 \mathrm{H}, \mathrm{m}), 7.41(1 \mathrm{H}, \mathrm{s})$.
(S)-2c	1687, 1648	-126.5	$0.80-1.03(12 \mathrm{H}, \mathrm{m}), 1.60-2.04(5 \mathrm{H}, \mathrm{m}), 3.61$ ($1 \mathrm{H}, \mathrm{dd}, J=7.0,9.9 \mathrm{~Hz}$), $3.76-4.38$ ($6 \mathrm{H}, \mathrm{m}$), 7.41 ($1 \mathrm{H}, \mathrm{s}$).
(R)-2d	1691, 1658	80.0	$0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{m})$, $3.62(1 \mathrm{H}, \mathrm{dd}, J=4.4,13.9 \mathrm{~Hz}), 3.86-4.55(6 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{s})$.
(S)-2d	1689, 1660	-75.8	$0.95(3 \mathrm{H}, \mathrm{t}, J=7.3 \mathrm{~Hz}), 0.97(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 1.42(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}), 1.64-2.04(4 \mathrm{H}, \mathrm{m})$, $3.62(1 \mathrm{H}, \mathrm{dd}, J=4.4,13.9 \mathrm{~Hz}), 3.86-4.55(6 \mathrm{H}, \mathrm{m}), 7.42(1 \mathrm{H}, \mathrm{s})$.

(ppm) with tetramethyl silane as an internal standard. Specific rotation $\left([\alpha]_{D}\right)$ was measured with a JASCO DPI-370 automatic digital polarimeter using MeOH as solvent. Microanalyses were performed in the Micro Analytical Laboratory of our institute. The imidazo[2,1-i]purines $[(R)-,(S) \mathbf{- 2 a}-\mathbf{d}$ and $(R)-,(S)-\mathbf{3 a}-\mathbf{d}]$ were synthesized according to the published procedures. ${ }^{4)}$ The amino alcohol used for synthesis of 6-hydroxyalkyl compounds was prepared with the method of Mckennin and Meyers. ${ }^{7}$ IBMX and amrinone for PDE activity assay were purchased from Sigma Chemicals Co., and rolipram synthesized according to method of Crossland. ${ }^{8)}$ PDE activity was assayed by the method of Thompson and Appleman. ${ }^{9}$) Physicochemical data of the imidazo[2,1$i]$ purines $[(R)-,(S)$-6a-d, $(R)-,(S)$-2a-d and $(R)-,(S) \mathbf{- 3 a -}$ d] are summarized in Tables 2 and 3.

Acknowledgement This study was supported in part by the Special Research Fund (2002) of Hokuriku University.

REFERENCES

1) Torphy T. J., Am. J. Resp. Crit. Care Med., 157, 351-370 (1998).
2) Souness J. E., Aldous D., Sargent C., Immunopharmacology, 47, 127-162 (2000).
3) Burnouf C., Pruniaux M. P., Curr. Pharmaceut. Design, 8, 12551296 (2002).
4) Suzuki H., Yamamoto M., Shimura S., Miyamoto K., Yamamoto K., Sawanishi H., Chem. Pharm. Bull., 50, 1163-1168 (2002).
5) Sawanishi H., Suzuki H., Yamamoto S., Waki Y., Kasugai S., Ohya K., Suzuki N., Miyamoto K., Takagi K., J. Med. Chem., 40, 3248-3258 (1997).
6) Catherine B., Marie P. P., Corinne M. S., Ann. Rep. Med. Chem., 33, 91-109 (1998).
7) Mckennin M. J., Meyers A. I., J. Org. Chem., 58, 3568-3571 (1993).
8) Crossland J., Drugs Future, 13, 38-40 (1988).
9) Thompson W. J., Appleman M. M., Biochemistry, 10, 311-316 (1971).
