Cyclic AMP Phosphodiesterase 4 Isoenzyme Inhibitory Activity of (*R*)and (*S*)-Isomer of 7-Methyl- or 8-Alkyl-4,5,7,8-tetrahydroimidazo[2,1-*i*]purin-5-one

Hirokazu Suzuki,^{*,*a*} Masaaki Nomura,^{*c*} Ken-ichi Miyamoto,^{*c*} Hiroyuki Sawanishi,^{*a*} and Kenji Yamamoto^{*b*}

^a Department of Synthetic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University; ^bDepartment of Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University; Ho-3 Kanagawa-machi, Kanazawa 920–1181, Japan: and ^cDepartment of Hospital Pharmacy, School of Medicine, Kanazawa University; 13–1 Takara-machi, Kanazawa 920–8641, Japan. Received September 10, 2003; accepted November 14, 2003

We investigated the structure-activity relationship of the (R)- and (S)-isomer of 7-methyl- and 8-alkyltetrahydroimidazo[2,1-*i*]purines for phosphodiesterase 4 (PDE4) inhibitors. (S)-8-Isopropyl-3,4-dipropylimizazo[2,1-*i*]purine (S)-2c exhibited both potent and selective PDE4 inhibitory activity.

Key words phosphodiesterase 4 inhibitor; condensed purine; imidazo[2,1-i]purine

cAMP-phosphodiesterase 4 (PDE4) is found in airway smooth muscle and inflammatory cells, and selective inhibitors of PDE4 are promising drugs for the treatment of asthma and inflammation.^{1–3)}

During investigations of heterocycle condensed purines to obtain selective PDE4 inhibitors, we found that some heterocycle [*i*]-condensed purines inhibited PDE4 more effectively than did [*a*]-, [*b*]-, [*c*,*d*]- and [*g*,*h*]-condensed purines.⁴⁾ Among heterocycle [*i*]-condensed purines, 3,4-dipropyl-4,5,7,8-terahydro-3*H*-imidazo[2,1-*i*]purine-5-one (1) showed selective PDE4 inhibitory activity and lacked some of the adverse reactions of xanthine derivatives.⁵⁾ Additionally, 1 did not show emetic action, which is one in the development of PDE4 inhibitors. In the course of subsequent investigations, we found that tetrahydroimidazo[2,1-*i*]purines (*dl*-2a, *dl*-2d and *dl*-3a, *dl*-3d), with a methyl group at 7- or 8-position, although causing a decline in selectivity, affect the PDE4 inhibitory activities more strongly than does 1.⁴⁾

The present study was undertaken to determine whether there is a difference between the PDE4 inhibitory activities of (*R*)- and (*S*)-isomers of 8-alkyl- $(2\mathbf{a}-\mathbf{c}, 3\mathbf{a}-\mathbf{c})$ and those of 7-methyl-imidazo[2,1-*i*]purines $(2\mathbf{d}, 3\mathbf{d})$. We report here on the synthesis and PDE4 inhibitory activity of imidazo[2,1-*i*]purines.

Chemistry Substituted imidazo[2,1-*i*]purines were prepared using the pathway we previously described.^{4,5)} Treatment of 3-propyl-6-(1,2,4-triazol-4-yl)purine (**4**) or 6-chloro-3-propylpurine (**7**) with each of the (*R*)- and (*S*)-isomers of 2-amino-1-propanol, 2-amino-1-butanol, 2-amino-3-methyl-1-butanol, and 1-amino-2-propanol yielded the corresponding 6-(hydroxyethylamino)purines (**5a**—**d**, **8a**—**d**), which

Fig. 1

were used for the next reaction without purification. Ring closure of 5a-d and 8a-d with thionyl chloride yielded (*R*)- and (*S*)-isomers of imidazo[2,1-*i*]purines (6a-d, 3a-d). N3-Propylation of 6a-d with propyl bromide in the presence of potassium carbonate afforded the corresponding (*R*)- and (*S*)-isomers of 2a-d (Chart 1).

BIOLOGICAL RESULTS AND DISCUSSION

The inhibitory activities of the imidazo[2,1-*i*]purines (**2a**—**d**, **3a**—**d**) against PDE1 and PDE4 isoenzymes from guinea-pig brain and PDE3 from guinea-pig heart were measured according to published methods.⁶) The results are shown in Table 1 together with the PDE inhibitory activities

Table 1

	\mathbf{R}^7	R ⁸ -	IC ₅₀ (µм)		
	K		PDE1	PDE3	PDE4
(R)-2a	Н	Me	22	20	1.4
(S)-2a	Н	Me	20	30	5.6
(R)- 2b	Н	Et	11	76	1.8
(S)-2b	Н	Et	5.6	65	1.7
(R)-2c	Н	iso-Pr	16	47	4
(S)-2c	Н	iso-Pr	21	>100	0.2
(R)-2d	Me	Н	31	85	>100
(S)-2d	Me	Н	37	50	0.6
(R)- 3a	Н	Me	28	37	1.8
(S)- 3a	Н	Me	13	23	1
(R)- 3b	Н	Et	8.9	59	1.6
(S)- 3b	Н	Et	4.5	27	1.4
(R)-3c	Н	iso-Pr	9.3	>100	7.6
(S)-3c	Н	iso-Pr	1.7	18	0.8
(R)-3d	Me	Н	78	90	>100
(S)-3d	Me	Н	51	>100	8.5
1		_	29	54	1.6
IBMX		_	6.8	2.3	6.8
Amrinone		_	>100	53	>100
Rolipram	—	—	>100	>100	3.7

Data are mean of three experiments.

a: R⁷ = H, R⁸ = Me; **b:** R⁷ = H, R⁸ = Et **c:** R⁷ = H, R⁸ = *iso-*Pr; **d:** R⁷ = Me, R⁸ = H

Reagents: (i) (2R)-, (2S)-2-amino-1-propanol, (2R)-, (2S)-2-amino-1-butanol, (2R)-, (2S)-2-amino-3-methyl-1-butanol or (2R)-, (2S)-1-amino-2-propanol, pyridine; (ii) SOCl₂, CHCl₃; (iii) Pr-Br, K₂CO₃, DMF

Chart 1

Table 2.	Physicochemical I	Data for Tetrahy	vdroiomidazo[2,	1- <i>i</i>]purines (6, 2, 3)
	2		·	

Compd. no.	mn (°C)	Desmust solar	Formula	Analysis (%) Calcd (Found)		
	mp (C)	Reciyst. solv.		С	Н	N
(R)-6a	282—283	AcOEt-MeOH	C ₁₁ H ₁₅ N ₅ O	56.64	6.48	30.02
(m			~ ~ ~ ~ ~	(56.58)	(6.50)	(29.95)
(S)- 6a	282—283	AcOEt-MeOH	$C_{11}H_{15}N_5O$	56.64	6.48	30.02
(\mathbf{D}) (b)	259 250	A-OE4 M-OU	CUNO	(56.69)	(6.53)	(30.11)
(A)-0D	238-239	ACOEL-MEOH	$C_{12} \Pi_{17} \Pi_5 O$	(58.22)	(7.01)	(28.32)
(S) 6b	252 254	AcOEt McOH	CHNO	(38.33)	(7.01)	(20.31)
(5)-00	255-254	Acolt-Meon	C ₁₂ II ₁₇ IV ₅ O	(58.21)	(6.95)	(28.45)
(<i>R</i>)-6c	250-251	AcOEt-MeOH	C., H., N.O	59.75	7 33	26.80
(II) oc	250 251	neolit meon	01311191150	(59.82)	(7.19)	(26.84)
(S)-6c	255-256	AcOEt-MeOH	C ₁₂ H ₁₀ N ₅ O	59.75	7.33	26.80
			- 13 19 3 -	(59.70)	(7.35)	(26.77)
(R)-6d	237—238	AcOEt-MeOH	C ₁₁ H ₁₅ N ₅ O	56.64	6.48	30.02
			11 15 5	(56.71)	(6.66)	(29.94)
(S)-6d	238-239	AcOEt-MeOH	C ₁₁ H ₁₅ N ₅ O	56.64	6.48	30.02
				(56.68)	(6.51)	(30.11)
(R)- 2a	125—126	pet. Ether	$C_{14}H_{21}N_5O$	61.07	7.69	25.43
				(61.33)	(7.84)	(25.50)
(S)- 2a	128—129	pet. Ether	$C_{14}H_{21}N_5O$	61.07	7.69	25.43
	100 101		<i>a</i> w w <i>a</i>	(61.21)	(7.78)	(25.38)
(<i>R</i>)-2b	120—121	pet. Ether	$C_{15}H_{23}N_5O$	62.26	8.01	24.20
(C) 2h	120 121	not Ethor	CHNO	(62.39)	(7.92)	(24.41)
(3)-20	120—121	pet. Ettler	$C_{15} \Pi_{23} \Pi_5 O$	(62.12)	(7.00)	(24.20)
(R)-2c	126-127	net Ether	СНИО	(02.15)	(7.99)	(24.34)
(11)-20	120-127	pet. Euler	01611251150	(63.43)	(8.14)	(23.15)
(S)-2c	126-127	net Ether	C., HasNeO	63 34	8 31	23.08
(3) =0	120 127	pen Enter	0161251150	(63.31)	(8.47)	(23.01)
(R)-2d	Oil	_	$C_{14}H_{21}N_{5}O$	()	275.1746	
			14 21 5		275.1749 ^{a)}	
(S)-2d	Oil		C ₁₄ H ₂₁ N ₅ O		275.1746	
					275.1744^{a}	
(R)- 3a	129—130	pet. Ether	$C_{14}H_{21}N_5O$	61.07	7.69	25.43
(<i>a</i> w w <i>a</i>	(61.19)	(7.71)	(25.52)
(S)- 3a	131—132	pet. Ether	$C_{14}H_{21}N_5O$	61.07	7.69	25.43
(D) 2 L	117 119	wet Ethen	CUNO	(61.17)	(7.61)	(25.54)
(K)-30	11/—118	pet. Ether	$C_{15}H_{23}N_5O$	62.20 (62.24)	8.01	(24.20
(S) 2h	118 110	net Ether	CHNO	(02.24)	(0.15)	(24.30)
(3)-30	110—119	pet. Ettler	$C_{15} \Pi_{23} \Pi_{5} O$	(62.09)	(8.12)	(24.34)
(R)-3c	129-130	net Ether	C., HasNeO	63 34	8 31	23.08
(11) 00	129 100	pen Enter	0161251150	(63.46)	(8.28)	(23.25)
(S)-3c	127—128	pet. Ether	C ₁₆ H ₂₅ N ₅ O	63.34	8.31	23.08
		1	10 25 5	(63.28)	(8.40)	(23.22)
(R)- 3d	Oil	_	C ₁₄ H ₂₁ N ₅ O		275.1746	
					275.1745 ^a)	
(S)- 3d	Oil	—	$C_{14}H_{21}N_5O$		275.1746	
					275.1747 ^a	

358

of **1**, non-selective PDE inhibitor IBMX, PDE3 inhibitor amrinone and PDE4 inhibitor rolipram, which were have been reported earlier.⁷⁾

The PDE4 inhibitory activities of (R)-2a, (R)-2b and (S)-2b on 3,4-dipropyl-imizazo[2,1-*i*]purines (2a—d) were as active that of as 1. Moreover, (S)-2c and (S)-2d inhibited PDE4 more strongly than 1 or rolipram. The PDE1 inhibitory activity of (R)- and (S)-isomers of 2b was stronger than that of 1, while (R)- and (S)-isomers of 2a, 2c and 2d were as active as 1. PDE3 inhibitory activities of (R)- and (S)-isomers of 2b, 2c and 2d were weaker than or the same as those of 1. (S)-2c did not show a definite effect on PDE3 isoenzymes, although (R)- and (S)-isomers of 2a showed somewhat stronger PDE3 inhibitory activities than did 1.

The PDE4 inhibitory activities of (S)-**3a** and (S)-**3c** on 1,4dipropyl-imizazo[2,1-*i*]purines (**3a**—**d**) were more potent than those of **1**, and those of other compounds similar except for (R)-**3c**, and (R)- and (S)-isomers of **3d**. However, (R)- and (S)-isomers of **3a**—**c** apart from (R)-**3c** induced an increase in PDE1 and PDE3 inhibitory activities.

In general, the PDE4 inhibitory potency of 2a-d and 3a-d was higher in (S)-isomers than (R)-isomers, except

Table 3. Spectral Data for Tetrahydroiomidazo[2,1-i]purines (6, 2, 3)

that of **2a**. A potential difference in PDE4 inhibitory activities between (*S*)- and (*R*)-isomers was observed for **2d** and **3d**, which have a methyl group at the 7-position. Further, the PDE1 and PDE3 inhibitory activity of (*S*)-**2d** was similar to those of **1**, and inhibited PDE4 more strongly than did **1**.

In our studies on the (*R*)- and (*S*)-isomers of 3,4-dipropyltetrahydroimidazo[2,1-*i*]purines ($2\mathbf{a}$ —d) and 1,4-dipropyltetrahyrdoimidazo[2,1-*i*]purines ($3\mathbf{a}$ —d), we found 8-isopropyl derivatives (*S*)- $2\mathbf{c}$ to be an effective inhibitor for PDE4. This finding indicates that the substituents on the dihydroimidazole ring and *N*3-propyl group may be important for the expression of potent and selective PDE4 inhibitory activities.

MATERIALS AND METHODS

Melting points were measured on a Yanagimoto micro melting points hot stage apparatus and were uncorrected. Infrared spectra (IR) were determined with a Horiba FT-720 spectrometer or a Hitachi 270-30 spectrometer. Mass spectra (MS) were measured with a JEOL-DX300. Nuclear magnetic response spectrometer (¹H-NMR) was recorded with a JEOL EX 90A. Chemical shifts are quoted in parts per million

	IR (KBr) cm^{-1}	$[\alpha]_{\rm D} (c=0.5)^{b}$	¹ H-NMR (CDCl ₃) δ ;
(R) -6a	3423, 1707, 1649	72.9	1.00 (3H, t, $J=7.3$ Hz), 1.54 (3H, d, $J=6.1$ Hz), 1.84 (2H, sext. $J=7.3$ Hz), 3.82 (1H, dd, $J=5.7$, 10.2 Hz), 4.03-4.60 (2H m), 6.01 (1H hrs), 7.73 (1H s)
(S)-6a	3450, 1707, 1678	-71.8	1.00 (3H, t, J=7.3 Hz), 1.54 (3H, d, J=6.1 Hz), 1.84 (2H, sext. J=7.3 Hz), 3.82 (1H, dd, J=5.7, 10.2 Hz), 4.03 - 4.60 (2H, m), 6.03 (1H, br.), 7.73 (1H, s).
(R)-6b	3448, 1709, 1684	82.8	1.00 (3H, t, <i>J</i> =7.3 Hz), 1.14 (3H, t, <i>J</i> =7.1 Hz), 1.63—2.04 (4H, m), 3.90—4.52 (4H, m), 7.94 (1H, s), 11.81 (1H, br s).
(S)-6b	3448, 1709, 1684	-79.6	1.00 (3H, t, <i>J</i> =7.3 Hz), 1.14 (3H, t, <i>J</i> =7.0 Hz), 1.63—2.04 (4H, m), 3.91—4.52 (4H, m), 7.94 (1H, s), 11.77 (1H, br s).
(R)-6c	3448, 1706, 1675	71.9	0.91—1.20 (9H, m), 1.61—2.04 (3H, m), 4.01—4.41 (5H, m), 7.93 (1H, s), 11.81 (1H, br s).
(S)-6c	3448, 1713, 1672	-68.8	0.91—1.20 (9H, m), 1.63—2.04 (3H, m), 4.01—4.41 (5H, m), 7.93 (1H, s), 11.85 (1H, br s).
(<i>R</i>)-6d ^{<i>a</i>)}	3448, 1712, 1675	86.2	0.99 (3H, t, <i>J</i> =7.2 Hz), 1.64 (3H, d, <i>J</i> =6.4 Hz), 1.82 (2H, sext. <i>J</i> =7.2 Hz), 3.78 (1H, dd, <i>J</i> =4.6, 11.4 Hz), 4.06-4.40 (2H, m), 4.74-5.04 (1H, m), 7.95 (1H, s), 11.33 (1H, br s).
(S)-6d ^{a)}	3405, 1707, 1655	-88.8	0.99 (3H, t, <i>J</i> =7.2 Hz), 1.64 (3H, d, <i>J</i> =6.4 Hz), 1.82 (2H, sext. <i>J</i> =7.2 Hz), 3.78 (1H, dd, <i>J</i> =4.4, 11.4 Hz), 4.06-4.41 (2H, m), 4.74-5.04 (1H, m), 7.95 (1H, s), 11.52 (1H, br s).
(R)- 3a	1689, 1653	98.6	0.95 (3H, t, <i>J</i> =7.2 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.37 (3H, d, <i>J</i> =6.4 Hz), 1.64—2.04 (4H, m), 3.50 (1H, dd, <i>J</i> =7.0, 10.4 Hz), 3.86—4.28 (6H, m), 7.45 (1H, s).
(S) -3a	1685, 1653	-97.9	0.95 (3H, t, <i>J</i> =7.3 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.37 (3H, d, <i>J</i> =6.4 Hz), 1.64—2.04 (4H, m), 3.50 (1H, dd, <i>J</i> =7.2, 10.4 Hz), 3.86—4.28 (6H, m), 7.45 (1H, s).
(R)- 3b	1682, 1655	82.1	0.94 (3H, t, <i>J</i> =7.4 Hz), 0.97 (3H, t, <i>J</i> =7.4 Hz), 1.56—2.04 (6H, m), 3.57 (1H, dd, <i>J</i> =6.7, 10.4 Hz), 3.86—4.32 (6H, m), 7.44 (1H, s).
(S)- 3b	1685, 1654	-79.6	0.94 (3H, t, <i>J</i> =7.4 Hz), 0.97 (3H, t, <i>J</i> =7.4 Hz), 1.57—2.04 (6H, m), 3.57 (1H, dd, <i>J</i> =6.6, 10.3 Hz), 3.86—4.32 (6H, m), 7.44 (1H, s).
(R)-3c	1697, 1649	129.7	0.89—1.03 (12H, m), 1.56—2.04 (5H, m), 3.64 (1H, dd, <i>J</i> =7.2, 10.4 Hz), 3.77—4.26 (6H, m), 7.43 (1H, s).
(S)-3c	1687, 1649	-132.4	0.89—1.03 (12H, m), 1.56—2.04 (5H, m), 3.64 (1H, dd, <i>J</i> =7.2, 10.4 Hz), 3.77—4.26 (6H, m), 7.43 (1H, s).
(R)-3d	1693, 1655	63.1	0.95 (3H, t, <i>J</i> =7.3 Hz), 1.44 (3H, d, <i>J</i> =6.0 Hz), 1.65—2.05 (4H, m), 3.63 (1H, dd, <i>J</i> =4.3, 13.7 Hz), 3.87—4.48 (6H, m), 7.46 (1H, s).
(S)-3d	1712, 1668	-60.4	0.95 (3H, t, <i>J</i> =7.3 Hz), 1.44 (3H, d, <i>J</i> =6.0 Hz), 1.65—2.05 (4H, m), 3.63 (1H, dd, <i>J</i> =4.3, 13.7 Hz), 3.87—4.48 (6H, m), 7.46 (1H, s).
(R)-2a	1687, 1652	112.2	0.94 (3H, t, <i>J</i> =7.3 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.34 (3H, d, <i>J</i> =6.4 Hz), 1.64—2.04 (4H, m), 3.47 (1H, dd, <i>J</i> =6.8, 10.4 Hz), 3.86—4.28 (6H, m), 7.42 (1H, s).
(S)-2a	1686, 1654	-108.7	0.94 (3H, t, <i>J</i> =7.3 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.34 (3H, d, <i>J</i> =6.4 Hz), 1.64—2.04 (4H, m), 3.47 (1H, dd, <i>J</i> =6.8, 10.4 Hz), 3.86—4.28 (6H, m), 7.42 (1H, s).
(R)- 2b	1686, 1655	103.3	0.86—1.06 (9H, m), 1.55—2.04 (6H, m), 3.57 (1H, dd, <i>J</i> =6.6, 10.3 Hz), 3.86—4.29 (6H, m), 7.44 (1H, s).
(S)- 2b	1686, 1655	-97.7	0.86—1.06 (9H, m), 1.56—2.04 (6H, m), 3.56 (1H, dd, <i>J</i> =6.6, 10.3 Hz), 3.86—4.29 (6H, m), 7.44 (1H, s).
(R)-2c	1687, 1649	124.8	0.80—1.03 (12H, m), 1.60—2.04 (5H, m), 3.61 (1H, dd, <i>J</i> =6.9, 9.9 Hz), 3.76—4.38 (6H, m), 7.41 (1H, s).
(S)-2c	1687, 1648	-126.5	0.80—1.03 (12H, m), 1.60—2.04 (5H, m), 3.61 (1H, dd, <i>J</i> =7.0, 9.9 Hz), 3.76—4.38 (6H, m), 7.41 (1H, s).
(<i>R</i>)-2d	1691, 1658	80.0	0.95 (3H, t, <i>J</i> =7.3 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.42 (3H, d, <i>J</i> =5.9 Hz), 1.64—2.04 (4H, m), 3.62 (1H, dd, <i>J</i> =4.4, 13.9 Hz), 3.86—4.55 (6H, m), 7.42 (1H, s).
(S)-2d	1689, 1660	-75.8	0.95 (3H, t, <i>J</i> =7.3 Hz), 0.97 (3H, t, <i>J</i> =7.2 Hz), 1.42 (3H, d, <i>J</i> =5.9 Hz), 1.64—2.04 (4H, m), 3.62 (1H, dd, <i>J</i> =4.4, 13.9 Hz), 3.86—4.55 (6H, m), 7.42 (1H, s).

a) ¹H-NMR spectra were recorded in DMSO- d_6 . b) $[\alpha]_D$ was measured using MeOH as solvent.

(ppm) with tetramethyl silane as an internal standard. Specific rotation ($[\alpha]_D$) was measured with a JASCO DPI-370 automatic digital polarimeter using MeOH as solvent. Microanalyses were performed in the Micro Analytical Laboratory of our institute. The imidazo[2,1-*i*]purines [(*R*)-, (*S*)-**2a**—**d** and (*R*)-, (*S*)-**3a**—**d**] were synthesized according to the published procedures.⁴⁾ The amino alcohol used for synthesis of 6-hydroxyalkyl compounds was prepared with the method of Mckennin and Meyers.⁷⁾ IBMX and amrinone for PDE activity assay were purchased from Sigma Chemicals Co., and rolipram synthesized according to method of Crossland.⁸⁾ PDE activity was assayed by the method of Thompson and Appleman.⁹⁾ Physicochemical data of the imidazo[2,1*i*]purines [(*R*)-, (*S*)-**6a**—**d**, (*R*)-, (*S*)-**2a**—**d** and (*R*)-, (*S*)-**3a d**] are summarized in Tables 2 and 3.

Acknowledgement This study was supported in part by the Special Research Fund (2002) of Hokuriku University.

REFERENCES

- 1) Torphy T. J., Am. J. Resp. Crit. Care Med., 157, 351-370 (1998).
- Souness J. E., Aldous D., Sargent C., *Immunopharmacology*, 47, 127–162 (2000).
- Burnouf C., Pruniaux M. P., Curr. Pharmaceut. Design, 8, 1255– 1296 (2002).
- Suzuki H., Yamamoto M., Shimura S., Miyamoto K., Yamamoto K., Sawanishi H., Chem. Pharm. Bull., 50, 1163–1168 (2002).
- Sawanishi H., Suzuki H., Yamamoto S., Waki Y., Kasugai S., Ohya K., Suzuki N., Miyamoto K., Takagi K., J. Med. Chem., 40, 3248–3258 (1997).
- Catherine B., Marie P. P., Corinne M. S., Ann. Rep. Med. Chem., 33, 91–109 (1998).
- 7) Mckennin M. J., Meyers A. I., J. Org. Chem., 58, 3568-3571 (1993).
- 8) Crossland J., Drugs Future, 13, 38-40 (1988).
- Thompson W. J., Appleman M. M., *Biochemistry*, 10, 311–316 (1971).